Minimum Size Subarray Sum
Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn't one, return -1 instead.
Example:
Given the array [2,3,1,2,4,3] and s = 7, the subarray [4,3] has the minimal length under the problem constraint.
Solution:
We could solve this problem by using Sliding Window Two Pointers in O(n) time complexity and O(1) space.
Code:
public class Solution {
/**
* @param nums: an array of integers
* @param s: an integer
* @return: an integer representing the minimum size of subarray
*/
public int minimumSize(int[] nums, int s) {
if (nums == null || nums.length == 0) {
return -1;
}
int n = nums.length;
int minLen = Integer.MAX_VALUE;
int j = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
while (j < n && sum < s) {
sum += nums[j];
j++;
}
if (sum >= s) {
minLen = Math.min(minLen, j - i);
}
sum -= nums[i];
}
if (minLen == Integer.MAX_VALUE) {
return -1;
}
return minLen;
}
}