Maximal Square
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and return its area.
Example:
For example, given the following matrix:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
Return 4.
Solution:
Similar to Sliding Window Matrix Maximum. The largest square is defined by the maximum length of that square. Therefore, we could create a matrix to store the maximum length of continue 1s. The maximum length of continue 1s in cell D (f[i][j)] could be defined by the min of maximum length in A, B and C plus 1, when matrix[i-1][j-1] == 1. Otherwise, f[i][j] = 0.
Code:
public class Solution {
/**
* @param matrix: a matrix of 0 and 1
* @return: an integer
*/
public int maxSquare(int[][] matrix) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return 0;
}
int m = matrix.length;
int n = matrix[0].length;
int[][] f = new int[2][n + 1];
int res = 0;
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (matrix[i - 1][j - 1] != 0) {
f[i % 2][j] = Math.min(f[(i - 1) % 2][j],
Math.min(f[i % 2][j - 1], f[(i - 1) % 2][j - 1])) + 1;
} else {
f[i % 2][j] = 0;
}
if (f[i % 2][j] > res) {
res = f[i % 2][j];
}
}
}
return res * res;
}
}